HOME
Search & Results
Full Text
Thesis Details
Page:
57
Full Screen
TITLE
DEDICATION
DECLARATION
CERTIFICATE-1
CERTIFICATE-2
ACKNOWLEDGEMENT
PREFACE
SYMBOLS AND ABBREVIATIONS
CONTENTS
1. CHITOSAN AND ITS DERIVATIVE POLYMERS-RECENT DEVELOPMENTS IN SYNTHESIS, CHARACTERIZATION AND APPLICATIONS
1.1. Generality on Polymers
1.2. Synthesis of polymers
1.3. Classification of Polymers
1.3.1. Synthetic Polymers
1.3.2. Synthetic Polymers Relevant to Biomedical Applications
1.3.3. Medical Applications of Synthetic Polymers
1.3.4. Biodegradable Synthetic Polymers
1.3. 5. Natural Polymers
1.4. Chitin and Chitosan in Detail
1.4.1. Source and Composition
1.4.2. Production of Chitin
1.4.3. Isolation of Chitin from Algae and Fungi
1.4.4. Production of Chitosan
1.4.5. Degree of Deacetylation (DD) and its Significance
1.4.6. Properties
1.4.7. Chitin Oligomers
1.4.8. Water Soluble Chitin
1.4.9. Chemical Modifications
1.5. Applications of Chitin and Chitosan
1.5.1. Medical Applications
1.5.2. In Wastewater Treatment
1.5.3. In Food Industry
1.5.4. In Cosmetics
1.5.5. In Agriculture
1.5.6. Looking Forward
1.6. Developments in Chemistry and Applications of Chitosan and Chitosan Derivatives
1.7. Aim and Scope of the Present Study
1.8. References
2. MATERIALS AND METHODS
2.1. Materials
2.2. Determination of Viscosity and Molecular Weight of Chitosan
2.3. Synthesis of Graft Copolymers of Chitosan and Vinyl Monomers
2.4. Calculation of Grafting Parameters
2.5. Preparation of Copolymer Films
2.6. FTIR Spectral Analysis
2.7. Thermal Analysis
2.8. Mechanical Property Evaluation
2.9. Swelling Properties
2.10. Contact Angle Studies
2.11. Wide Angle X-ray Diffraction (WAXD) Studies
2.12. The Surface Morphology Studies
2.13. Preliminary Biocompatibility Evaluation
2.14. Biodegradation Studies
2.15. Permeation Studies
2.16. Preparation of Microspheres and Drug Release Studies
2.17. References
3. CHITOSAN-G-POLY (METHYL METHACRYLATE)
3.1. Synthesis and Characterisation
3.2. Chitosan-g-Poly (Methyl methacrylate) Microspheres for Controlled Release of Ampicillin
3.3. Results and Discussion
3.3.1. Preparation and Morphology Evaluation of the Microspheres
Fig 3.11a. SEM micrograph of the chitosan/ chitosan -g-PMMA film
Fig 3.11b. SEM micrograph of the chitosan/ chitosan -g-PMMA (CH-M7) microspheres
Fig 3.11c. Micro CT of the chitosan/ chitosan -g-PMMA (CH-M7) microspheres
Fig 3.12. Optical microscopic image of the CH/CH-M7 microspheres A) dry B) Swollen (after keeping at pH 1.98 overnight)
3.3.2. Blood Compatibility of PMMA-g-Chitosan Microspheres
3.3.3. The In Vitro Cytotoxicity Studies
3.3.4. Biodegradability of the Microspheres
3.3.5. Drug Incorporation into the Microspheres
3.3.6. The In Vitro Release of Ampicillin
3.3.7. Antibacterial Activity Studies
Fig 3.21. Minimum inhibitory concentration (MIC) method using tube dilution
Fig 3.22. Antibacterial activity of A) Chitosan and B) Chitosan/chitosan-g-PMMA microspheres against ATCC 25923 S aureus C) Chitosan and D) Chitosan/chitosan-g-PMMA microspheres against ATCC 25922 E coli
3.4. Conclusions
3.5. References
4. CHITOSAN-G-POLY (2-HYDROXYETHYL METHACRYLATE)
4.1. Synthesis and Characterisation
4.1.1. Background
4.1.2. Synthesis of Chitosan-g-poly (2-Hydroxyethyl methacrylate)
4.1.3. FTIR Spectral Analysis
4.1.4. Thermal Studies
4.1.5. Mechanical Properties
4.1.6. Hydrophilicity of Graft Copolymers
4.1.7. X-ray Diffraction Patterns
4.1.8. In Vitro Screening of Materials
4.1.9. In Vitro Cytotoxicity Test
4.1.10. Biodegradation Studies
4.2. Chitosan-g- poly (HEMA) for Dialysis Membrane Applications
4.2.1. Background
4.2.2. Permeation Studies
4.3. Conclusions
4.4. References
5. CHITOSAN-G-POLY (ETHYLENE GLYCOLMONOMETHACRYLATE)
5.1. Synthesis and Characterisation
5.1.1. Background
5.1.2. Preparation of Chitosan-g-poly (ethylene glycol mono methacrylate)
5.1.3. FTIR Spectral Analysis
5.1.4. X-ray Diffraction Patterns
5.1.5. Thermal Studies
5.1.6. Mechanical Properties
5.1.7. Swelling Studies
5.1.8. Contact Angle Study
5.1.9. Blood Compatibility of Chitosan-g-PEGm
5.1.10. The In Vitro Cytotoxicity Studies
5.1.11. Biodegradability of the Films
5.2. Chitosan-g-polyethylene glycol monomethacrylate for DialysisMembrane Applications
5.2.1. Permeation Studies
5.3. Conclusions
5.4. References
6. CHITOSAN-G-POLY (VINYL ACETATE/VINYL ALCOHOL)
6.1. Synthesis and Characterisation
6.1.1. Background
6.1.2. Preparation of Chitosan-g-poly (vinyl acetate) /poly (vinyl alcohol)
6.1.3. FTIR Spectral Analysis
6.1.4.X-ray Diffraction Patterns
6.1.5. Thermal Studies
6.1.6. Mechanical Properties
6.1.7. Swelling Studies
6.1.8. In Vitro Screening of Materials
6.1.9. In Vitro Cytotoxicity Test
6.1.10. Biodegradation Studies
6.2. Chitosan-g-poly (vinyl acetate) for Dialysis Membrane Applications
6.2.1. Background
6.2.2. Creatinine Permeation
6.2.3. Urea Permeation
6.2.4. Glucose Permeation
6.2.5. Albumin Permeation
6.3. Permeation Properties of Chitosan-g-PVOH
6.3.1. Background
6.3.2. Creatinine Permeation
6.3.3. Urea Permeation
6.3.4. Glucose Permeation
6.3.5. Albumin Permeation
6.4. Conclusions
6.5. References
7. COMPARATIVE STUDY OF THE PROPERTIES AND APPLICATIONS OF CHITOSAN-G-POLYMERS
7.1. Background
7.2. Comparison of Physico-Chemical Properties
7.3. Preliminary Biocompatibility Evaluation
Fig 7.4a. Live-dead assay with L929 mouse fibroblast cells on contact with chitosan (1-3), chitosan-g-poly (HEMA) (4-6), chitosan-g-PEGm (7-9), chitosan-g-PVAc (9-12) and chitosan-g-PVOH (13-15) with different magnifications (of the objective)
7.4. Assessment of the Copolymers for Biomedical Applications
7.4.1. Copolymers as Haemodialysis Membranes
7.4.2. Chitosan-g-PMMA Microspheres for Controlled Release of Ampicillin
7.5. Conclusions
7.6. References
8. SUMMARY AND CONCLUSIONS
8.1. Summary
8.2. Conclusions
8.3. Scope for Future Study
8.4. Publications in Refereed Journals
8.5. Papers Presented in National and International Conferences
8.6. Papers Communicated to International Journals