HOME
Search & Results
Full Text
Thesis Details
Page:
152
Full Screen
TITLE
CERTIFICATE
DECLARATION
CONTENTS
ACKNOWLEDGEMENT
List of Abbreviations
I INTRODUCTION AND OBJECTIVES
A. Copper ion-specific polymera by surfkce-templatepolymerization
B. Metal ion specificities of metal ion-desorbed polymer-metalcomplexes
Organisation of the Thesis
II MOLECULAR IMPRINTING: NEW POSSIBILITIES FOR THE DEVELOPMENT OF METAL ION SPECIFIC POLYMERS
II. 1. Molecular Imprinting. Basic Principle
II. 2. Molecular Imprinting in Synthetic Polymers
II. 3. Factors Influencing the Specificity and Selectivity Characteristics of Imprinted Polymers
3 (a) Rigidity of the polymer support
3 (b) Flexibility of the polymer support
3 (c) Accessibility of the binding sites
3 (d) Mechanical stability
II. 4. Imprinted Cavities in Different Types of Polymer Supports
4 (a) Organic polymer layers on inorganic supports
4 (b) Imprinting on silica gels
II. 5. Molecular Imprinting in Biopolymers
5 (a) In proteins
5 (b) In carbohydrates
II. 6. Binding by Interaction Through Metal Complexes
11.7. Metal-ion Selective Imprinted Polymers
Table 11.1. Examples of metal ion selective imprinted polymers
II. 8. Various Approaches for the Synthesis of Metal Ion Selective Polymers
8 (a) From linear polymers
8 (b) Polymerization of mixtures of monomers containing complexing groups
8 (c) Molecularly imprinted polymer using Surface-templated polymer
II. 9. Applications of Molecularly Imprinted Polymers
9 (a) Chromatography
9 (b) Imprinted polymers for rodloimmunoassgy
9 (c) In calalysis
9 (d) Molecularly imprinted polymers in the design of biosensors
9 (e) Selective reactions in molecularly imprinted cavities
9 (f) Applications in selective metal ion concentration
II.10. References
III TAILORING OF METAL ION-IMPRINTED MICROSPHERES USING SURFACE –TEMPLATE POLYMERIZATION: SYNTHESIS, CHARACTERISATION AND SPECIFICITY STUDIES
III. I. Preparation of DVB-, EGDMA-, BDDMA- and HDODA-crosslinked Cu (II) Ion-imprinted Microspheres using Surface-template Polymerization
III. 2. Desorption of Imprinted Cu (II) Ions from the Imprinted Microspheres and the Cu (II) Rebinding Studies
III. 3. Metal Ion Specificities of DVB-, EGDMA-, BDDMA- and HDODA crosslinked Cu (II) Ion-desorbed Imprinted and Unimprinted Microspheres
3 (a) Comparison of the Cu (II) ion rebindings of Cu (II) ion-imprinted and unimprinted microrpheres
3 (b) Effect of pH Dependence on metal ion rebinding
3 (c) Effect of the nature and the degree of cross linking agent on the metal ion specificity
III. 4. Characterization of Cu (II) Ion-imprinted and Unimprinted Microspheres
4 (a) FT-IR spectra
4 (b) UV-vis spectra
4 (c) EPR spectra
4 (d) SEM
Fig.III.8. Scanning electron micrograph of 17 molO/o DVB-crosslinked (a) unimprinted microspheres and (b) Cu (1I) ion-imprintedmicrospheres
Fig.III.9 (a) Scanning electron micrograph of 17 mol% EGDMA-crosslinkedCu (1X) ion-imprinted microspheres
Fig.III.9 (b) Scanning electron micrograph of 17 mol% BDDMA-crosslinkedCu (I1) ion-imprinted microspheres
Fig.III.9 (c) Scanning electron micrograph of 17 molO/o WDODA-crosslinkedCu (1I) ion-imprinted microspheres
III. 5. Metal Ion Selectivity Studies of Cu (II) Ion-imprinted and Unimprinted Microspheres
III. 6. References
IV POLYMER-METAL COMPLEXES OF CROSSLINKED POLYACRYLAMIDE AND POLYSTYRENE-SUPPORTED LIGANDS: SYNTHESIS, CHARACTERISATION AND SPECIFICITY STUDIES
IV.A. Polymer Metal complexes of Polyacrylamide- and Polystyrene supported Glycines
A.1. Preparation of Linear Polyacrylamide
A.1. Preparation of 2 to 20 mol% DVB-crosslinked Polyacrylamides
A.1. Preparation of 2 to 20 mol% NNMBA-crosslinked Polyacrylamides.
A.1. Preparation of 8 mol% EGDMA-, BDDMA- and HDODA-crosslinked Polyacrylamides
A.1. Preparation of Linear, DVB-, NNMBA-, EGDMA-, BDDMA and HDODA-crosslinked Polyacrylamide-supported Glycines
A.1. Preparation of Polystyrene-supported Sodium Salt of Glycine
A.1. Metal Ion Complexations of Polyacrylamide- and Polystyrene supported sodium salt of glycines
A.1. Characterization of functionalized and unfunctionalized polyacrylamides and Polystyrenes and their Metal Complexes
8 (a) FT-IR spectra
8 (b) UV -visible spectra
8 (c) EPR spectra
8 (d) SEM
Fig. N. 14. SEM of (a) 4mo1°/o DVB-crosslinked polyacxylamide-supported~lvcinea nd (bl Cu (IIl comnlex
Fig. IV. l.5. SEM of (a) 4mol% NNMBA-crosslinked polyacrylamide supported glycine and (b) Cu (II) complex
A.1. Effect of pH Dependence on Metal Ion Binding
A.10. Swelling studies of 2-20 mol% DVB- and NNMBA- and 8 mol% EGDMA-, BDDMA- and HDODA-crosslinked Polyacrylamide, polyacrylamide-supported Glycine and Cu (II) Complexes
A.11. Metal Ion Rebinding Studies of Metal Ion Desorbed Systems
A.12. pH Dependence on Metal Ion Rebinding
A.13. Time-coure and Kinetics of Metal Ion Binding and Rebinding
13 (a) Time-course of metal ion binding and rebinding
13 (b) Kinetics of metal ion binding and rebinding
A.14. Metal ion Selectivity Studies of Polyacrylamide and Polystyrene supported Glycines and their Metal Ion Desorbed Systems
IV.B. Polymer Metal Complexes of polystyrene-supported N, N-bis (salicylidene-2-aminoethyl) aminomethyl and N, N-bis (2-aminoethyl) aminomethyl Groups
B.1. Preparation of Crosslinked N, N-bis (salicylidene-2-aminoethyl) aminomethyl Polystyrenes
1(a) Preparation of 2 mol%EGDMA-, BDDMA-, and HDODA-crosslinked polystyrenes
1(b) Preparation of 2 mol% EGDMA-, BDDMA-, and HDODA-crossIinked.44 chloromethyl poystyrenes
1 (c) Preparation of NN-bis (salscylidene-2-aminoethyl) aminomethyl polystyrenes
B.2. Metal Ion Complexation of Crosslinked N, N-bis (salicylidene-2-aminoe aminomethyl Polystyrenes
B.3. Characterization of Polymer Anchored Schiff Bases and Metal Complexes
3 (a) FT-IR spectra
3 (b) UV-vis spectra
3 (c) EPR spectra
3 (d) CNMR
B.4. Influence of pH on Metal Ion Complexation of N, N-bis (salicylidene aminoethyl) aminomethyl Polystyrenes
B.5. Swelling Studies of N, N-bis (salicylidene aminoethyl) aminomethyl Polystyrenes and Cu (II) Complexes
B.6. Recyclability Studies
IV.C. Metal Ion Complexations of 2 mot% EGDMA-, BDDMA- and HDODA Crosslinked N, N-bis (2-aninoethyl) aminomethyl Polystyrenes
C.1. Preparation of 2 mol% EGDMA-, BDDMA- and HDODA-crosslinked N, N-bis (2-aminoethyl) aminomethyl Polystyrenes
C.2 Metal Ion Complexations of Various Crosslinked N, N-bis (2-aminoethyl) aminomethyl Polystyrenes
C.3. Characterisation of N, N-bis (2-aminoethyl) aminomethyl Polystyrenes and Derived Metal Complexes
(i) FT-IR spectra
(ii) UV-visible spectra
(iii) EPR spectra
C.4. Swelling Studies of N, N-bis (salicylidene-2-aminoethyl) aminomethyl Polystyrene and Cu (II) Complexes
C.5. Effect of pH Dependence of N, N-bis (2-aminoethyl) aminomethyl Polystyrenes
C.6. Metal Ion Specificity Studies of Crosslinked N, N-bis (2-aminoethyl) aminomethyl Polystyrenes
IV. D. References
V EXPERIMENTAL
V.1.General
1 (a) Materials
1 (b) Instrumental
V.2.Preparation of Metal Ion-imprinted Microsphere Using Surface-templated Polymerization
2 (a) Preparation of DVB-crosslinked Cu (II) ion-imprinted microspheres
2 (b) Preparation of EGDMA-crosslinked Cu (II) ion-imprinted microspheres
2 (c) Preparation of BDDMA-crosslinked Cu (II) ion-imprinted microspheres
2 (d) Preparation of HDODA-crosslinked Cu (II) ion-imprinted microspheres
V.3. Desorption of Imprinted Metal Ion from the Microspheres: General Procedure
V.4. Metal Ion Specificity Studies of Metal Ian-desorbed Imprinted and Unimprinted Microspheres: General Procedure
V.5. Selectivity Studies of Metal Ion-desorbed Imprinted and Unimprinted Microspheres: General Procedure
V. 6. Preparation of Linear, DVB-, NNMBA-, EGDMA-, BDDMA- and HDODA-cross linked Polyacrylamides
6 (a) Preparation of linear polyacrylamide
6(b) Preparation of 2-20 mol% DVB-cross linked polyacrylamides
6(c) Preparation of 2-20 mol% NNMBA crosslinked polyacrylamides
6(d) Preparation of 8 mol% EGDMA-cross linked poyacrylamide
6(e) Preparation of 8 mol% BDDMA-crosslinked polyacrylamide
6(f) Preparation of 8 mol% HDODA-crosslinked polyacrylamide
V. 7. Preparation of Crosslinked Polyacrylamide Polystyrene-supported Sodium Salt of Glycines
7 (a) Transamidation of polyacrylamides with sodium salt of glycine
7(b) Preparation of 2 mol% macroporous polystyrene-supported glycines
V. 8. Estimation of Carboxyl Capacity
V. 9. Metal Ion Complexations of Polyacrylamide -and Polystyrene-supported Sodium Salt of Glycines: General Procedure
V.10. Effect of pH Dependence on Metal Ion Binding and Rebinding
V.11. Swelling Studies of Crosslinked Polyacrylamides, Polyacrylamide-Supported Glycines and Cu (II) Complexes: General Procedure
V.12. Kinetics of Metal Ion Binding and Rebinding
V.13. Desorption of Complexed Metal Ions: General Procedure
V.14. Rebinding of Metal Ions: General Procedure
V.15. Selectivity Studies: General Procedure
V.16. Preparation of N, N-bis (salicylidene-2-aminoethyl) aminomethyl and N, N-bis (2-aminoethyl) aminomethyl Polystyrenes
16(a) Preparation oft mol% EGDMA-, BDDMA-, and HDODA-cross linked poysyrenes.
16 (b) Chloromethylation of crosslinked polystyrenes
16 (c) Estimation of chlorine capacity-Volhards method
16 (d) Preparation of N, N-bts (salicylidene-2-aminoethyl) aminomethyl polystyrenes
16 (e) Preparation of N N-bis (2-aminoethyl) aminomethyl poystyrenes
16 (f) Metal ion complexations, metal ion desorption and specificity.studies
VI CONCLUSION AND OUTLOOK
(a) Metal ion imprinted systems
(b) Metal ion desorbed systems